NO.10389757
みんなで難関大数学を攻略しよう!
-
249 名前:元塾講師:2005/10/05 11:15
-
ここで一般にnCk = nCn-k であるから、
K = Σ(a = 0~n){nCa(n+1Ca+1 + n+1Ca+2 + … + n+1Cn+1)}
= Σ(a = 0~n){nCn-a (n+1Cn-a + n+1Cn-a-1 + … + n+1C0)}
= Σ(n-a = n~0){nCn-a (n+1Cn-a + n+1Cn-a-1 + … + n+1C0)}
= Σ(k = 0~n){nCk (n+1Ck + n+1Ck-1 + … + n+1C0)} 〔 n-a =k とおいた〕
= Σ(a = 0~n){nCa(n+1Co + n+1C1 + … + n+1Ca)} 〔k→aとおきかえた〕
よって、
Σ(a = 0~n){nCa(n+1Ca+1 + n+1Ca+2 + … + n+1Cn+1)}
+ Σ(a = 0~n){nCa(n+1Co + n+1C1 + … + n+1Ca)}
=Σ(a = 0~n){nCa(n+1Co + n+1C1 + … + n+1Cn+1)}
=Σ(a = 0~n){nCa(2^(n+1))} = 2^(n+1)Σ(a = 0~n)nCa 〔∵二項定理〕
= 2^(n+1)・2^n = 2^(2n+1) ∴2K = 2^(2n+1) ∴K = 2^(2n)
求める確率は、(☆)より、(1/2)^(2n+1)・K = 1/2 (答)